- 0. Let A be a commutative Banach algebra and let Δ be the set of all complex homomorphisms of A. Prove the following.
 - (a) Every maximal ideal of A is the kernel of some $h \in \Delta$.
 - (b) If $h \in \Delta$, the kernel of h is a maximal ideal of A.
 - (c) An element $x \in A$ is invertible in A if and only if $h(x) \neq 0$ for every $h \in \Delta$.
 - (d) An element $x \in A$ is invertible in A if and only if x lies in no proper ideal of A.
 - (e) $\lambda \in \sigma(x)$ if and only if $h(x) = \lambda$ for some $h \in \Delta$.

2828/M11

OCTOBER 2011

Paper I — L^p SPACES AND BANACH ALGEBRA

Time: Three hours

Maximum: 100 marks

Answer any FIVE questions.

All questions carry equal marks.

- 1. (a) If φ is convex on (a,b), then prove that φ is continuous on (a,b).
- (b) State and prove Jensen's Inequality.
- 2. (a) If P and q are conjugate exponents, $1 \le p \le \infty$, and if $f \in L^p(\mu)$ and $g \in L^q(\mu)$, then show that $fg \in L^1(\mu)$, and $\|f + g\|_{\ell} \le \|f\|_p + \|g\|_q$.
 - (b) If $1 \le p \le \infty$, and $f,g \in L^p(\mu)$. Show that $f + g \in L^p(\mu)$ and $||f + g||_p \le ||f||_p + ||g||_q$.
- 3. Define the term conjugate exponents. Establish the Holder's and Minkowski's inequalities.

- (a) Let X be the class of all complex, measurable simple functions on X such that $\mu(\{x:S(x)\neq 0\})<\infty$. If $1\leq p\leq\infty$ show that S is dense in $L^p(\mu)$.
- (b) Show that if X is a locally compact Hausdorff space $C_o(X)$ is the completion of $C_c(X)$ under supremum metric.
- 5. (a) Define the terms : Banach Algebra, Complex Homomorphism.
 - If A is Banach algebra, $x \in A$, ||x|| < 1. Show that
 - (i) e x is invertible

4.

(b)

- (ii) $\|(e-x)^{-1}-e-x\| \le \frac{\|x\|^2}{1-\|x\|}$.
- (iii) $|\phi(n)<1|$ for every complex homomorphism ϕ on A.
- 6. If ϕ is a linear functional on a Banach algebra A, such that $\phi(e) = 1$ and $\phi(x) \neq 0$ for every invertible $x \in A$, then prove that

2

$$\phi(xy) = \phi(x)\phi(y).$$

- 7. If A is Banach algebra and $x \in A$. Prove that
 - (a) the spectrum $\sigma(x)$ of x is compact and non empty and
 - (b) the spectral radius, $\rho(x)$ of x satisfies

$$\rho(x) = \lim_{n \to \infty} ||x^n||^{\frac{1}{n}} = \inf_{n \ge 1} ||x^n||^{\frac{1}{n}}.$$

- 8. (a) Define the term: Gelfand Transforms.
 - (b) Let Δ be the maximal ideal space of a commutative Banach algebra A. Show that
 - (i) Δ is a compact Hausdorff space.(ii) The Gelfand transform is
 - homomorphism of A onto subalgebra \hat{A} of $C(\Delta)$, whose kernel is rad A.
 - (iii) If $x \in A$ the range of \hat{x} is the spectrum $\sigma(x)$ and $\|\hat{x}\|_{\infty} = \rho(x) \le \|x\|$.
- 9. (a) State and prove Gelfand-Naimark theorem.
 - b) If ψ : B→A is a homomorphism of a commutative Banach algebra B into a Semi simple commutative Banach algebra A show that ψ is continuous.

MODULUS AND GALOIS THEORY

Time: Three hours

Maximum: 100 marks

Answer any FIVE questions.

All questions carry equal marks.

- 1. (a) Let R be a commutative ring with 1 which is a simple ring. Prove that R is a field.
 - (b) Prove that any field is a simple ring.
- 2. (a) State and prove first isomorphism theorem.
 - b) Show that P is a prime ideal of Z iff either P = 0 or P = pZ for some prime p.
- 3. (a) Let R be a principal ideal domain. Prove that every $a \in R$ which is not a unit can be expressed as a product of irreducible elements.
 - (b) Show that the ring $R = \left\{ \frac{m}{n} \middle/ m, n \in \mathbb{Z}, nodd \right\}$ is a principal ideal domain.